Crystal Structure of the HLA-DM–HLA-DR1 Complex Defines Mechanisms for Rapid Peptide Selection
نویسندگان
چکیده
HLA-DR molecules bind microbial peptides in an endosomal compartment and present them on the cell surface for CD4 T cell surveillance. HLA-DM plays a critical role in the endosomal peptide selection process. The structure of the HLA-DM-HLA-DR complex shows major rearrangements of the HLA-DR peptide-binding groove. Flipping of a tryptophan away from the HLA-DR1 P1 pocket enables major conformational changes that position hydrophobic HLA-DR residues into the P1 pocket. These conformational changes accelerate peptide dissociation and stabilize the empty HLA-DR peptide-binding groove. Initially, incoming peptides have access to only part of the HLA-DR groove and need to compete with HLA-DR residues for access to the P2 site and the hydrophobic P1 pocket. This energetic barrier creates a rapid and stringent selection process for the highest-affinity binders. Insertion of peptide residues into the P2 and P1 sites reverses the conformational changes, terminating selection through DM dissociation.
منابع مشابه
Disruption of Hydrogen Bonds between Major Histocompatibility Complex Class II and the Peptide N-Terminus Is Not Sufficient to Form a Human Leukocyte Antigen-DM Receptive State of Major Histocompatibility Complex Class II
Peptide presentation by MHC class II is of critical importance to the function of CD4+ T cells. HLA-DM resides in the endosomal pathway and edits the peptide repertoire of newly synthesized MHC class II molecules before they are exported to the cell surface. HLA-DM ensures MHC class II molecules bind high affinity peptides by targeting unstable MHC class II:peptide complexes for peptide exchang...
متن کاملIdentification of the Lateral Interaction Surfaces of Human Histocompatibility Leukocyte Antigen (HLA)-DM with HLA-DR1 by Formation of Tethered Complexes That Present Enhanced HLA-DM Catalysis
Human histocompatibility leukocyte antigen (HLA)-DM is a major histocompatibility complex (MHC)-like protein that catalyzes exchange of antigenic peptides from MHC class II molecules. To investigate the molecular details of this catalysis we created four covalent complexes between HLA-DM and the MHC class II allele DR1. We introduced a disulfide bond between the naturally occurring cysteine bet...
متن کاملHLA-DO as the Optimizer of Epitope Selection for MHC Class II Antigen Presentation
Processing of antigens for presentation to helper T cells by MHC class II involves HLA-DM (DM) and HLA-DO (DO) accessory molecules. A mechanistic understanding of DO in this process has been missing. The leading model on its function proposes that DO inhibits the effects of DM. To directly study DO functions, we designed a recombinant soluble DO and expressed it in insect cells. The kinetics of...
متن کاملShort peptide sequences mimic HLA-DM functions.
HLA-DM (DM) plays a critical role in Ag presentation to CD4 T cells by catalyzing the exchange of peptides bound to MHC class II molecules. It is known that DM interaction with MHC II involves conformational changes in the MHC II molecule leading to the disturbance of H-bonds formed between the bound peptide and the MHC II groove leading to peptide dissociation. The specific region of the DM mo...
متن کاملHLA-DM Focuses on Conformational Flexibility Around P1 Pocket to Catalyze Peptide Exchange
Peptides presented by major histocompatibility complex class II (MHCII) molecules to CD4+ T cells play a central role in the initiation of adaptive immunity. This antigen presentation process is characterized by the proteolytic cleavage of foreign and self proteins, and loading of the resultant peptides onto MHCII molecules. Loading and exchange of antigenic peptides is catalyzed by a non-class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 151 شماره
صفحات -
تاریخ انتشار 2012